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ABSTRACT

In the existence of autocorrelation problem, the Ordinary Least Squares
(OLS) estimates become incompetent. The Cochrane - Orcutt Prais -
Winsten iterative method (COPW) is the most widely used remedial
measure to rectify this problem. However, this iterative procedure is
based on the OLS estimates, which is not resistant and easily in�uenced
by high leverage points (outliers in the x-direction) and outliers in the
y-direction. The COPW based on MM estimator is developed to remedy
both problems of autocorrelation and high leverage points. Neverthe-
less, MM estimator does not perform well in the presence of bad lever-
age points. In this paper, we propose to improvise the Cochrane-Orcutt
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Prais-Winsten iterative method based on GM6 estimator so that autocor-
related errors and high leverage points can be recti�ed. The performance
of the COPW-GM6 is scrutinized widely by Monte Carlo simulation and
real example. The results of this study show that the COPW-GM6 is
more e�cient than the COPW and COPW-MM.

Keywords: Autocorrelation, bad leverage points, Cochrane-Orcutt Prais-
Winsten iterative method (COPW), good leverage points,
high leverage points (HLPs), outliers.

1. Introduction

The most commonly used technique for estimating the parameters of multi-
ple linear regression model is the Ordinary Least Square method (OLS) due to
its general acceptance, neat statistical properties and computational simplicity.
The OLS estimates has many attractive properties under normality assump-
tions of regression errors. Nevertheless, in many occasions, the statistical prac-
titioners just apply it without any rigorous checking. One of the assumptions
that is not usually ful�lled is the random and uncorrelated errors. White and
Brisbin (1980) stated that the OLS estimators lose their Best Linear Unbiased
Estimators (BLUE) properties when the error term of the current observation
is correlated with the error term of the previous observation i.e. E(εi,εj) 6= 0 or
cov(εi, εj) 6= 0 for i 6= j. The true population variance (σ2) is likely to be under-
estimated by the sample variance. As a result, the OLS coe�cients estimates
become less e�cient in the presence of autocorrelated errors in the sense that
the usual t and F tests of signi�cance are no longer trustworthy. These tests
may become statistically signi�cance when in fact they are not. In addition
to that, the coe�cient of multiple determination, R2 gets in�ated which shows
that the �tting is good but indeed it is not. Therefore, autocorrelated error
terms may lead to misleading conclusions about the statistical signi�cance of
the estimated regression coe�cients (see Gujarati and Porter (2009)). Hence,
suitable remedial measures should be considered after detecting the existence
of autocorrelation problem.

To correct the problem of autocorrelation , there are several remedial mea-
sures such as Cochrane-Orcutt iterative method and Cochrane-Orcutt Prais-
Winsten two-step or iterative procedures, Durbin two-step procedure, and
the Hildreth-Lu, scanning or search procedure which are based on a specif-
ically estimated correlation coe�cient see (Green, 2008) and (Gujarati and
Porter, 2009)). Among these methods, Cochrane-Orcutt Prais-Winsten itera-
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tive method (COPW) is the most commonly used measure in econometrics to
get OLS estimators with the BLUE properties. However, this method (COPW)
is based on the OLS estimates, which is not robust and therefore easily in�u-
enced by high leverage points (outliers in the x-direction) (see Habshah (1999),
Rana et al. (2012) and Sani et al. (2019)). Many statistics practitioners are not
aware of the unduly e�ects of high leverage points on the OLS estimates. The
COPW based on MM estimator is developed to remedy both problems of au-
tocorrelation and high leverage points in Habshah et al. (2013). Nevertheless,
MM estimator does not perform well in the presence of bad leverage points.
In this paper, we propose to improvise the Cochrane-Orcutt Prais-Winsten
iterative method based on GM6 estimator so that autocorrelated errors and
high leverage points can be recti�ed simultaneously. This method is devel-
oped by integrating high asymptotic e�ciency, high breakdown and bounded
in�uence property of GM6 estimator in the Cochrane-Orcutt Prais-Winsten it-
erative method. We name this new method as Cochrane-Orcutt Prais-Winsten
iterative method based on GM6 estimator (COPW-GM6).

2. The Proposed Robust COPW-GM6

Estimator

2.1 The COPW-GM6

It is important to mention that in each step of COPW iterative method, the
ordinary least square method is employed to obtain the parameter estimates
of the multiple linear regression model. In addition to that, the transforma-
tion to correct for autocorrelation problem does not remove the in�uence of
HLPs on OLS method. Hence, COPW is anticipated to show inconsistent re-
sults in the existence of HLPs. COPW is modi�ed so that it is robust and
not a�ected by HLPs. The robust COPW is formulated by incorporating GM-
estimator which has a breakdown point close to 0.5, a bounded in�uence func-
tion and a high asymptotic e�ciency for the normal model (see Coakley and
Hettmansperger (1993)) in the COPW procedure. We name this regression
estimator as Cochrane-Orcutt Prais-Winsten iterative method based on GM6
estimator (COPW-GM6). In the COPW-GM6 estimator, the OLS estimator
are substituted with GM6 estimator. COPW-GM6 is expected to be more
consistent and precise relative to COPW, COPW-MM in the presence of bad
leverage points.

Consider the following multiple linear regression model:
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yt = β0 + β1x1t + β2x2t+, . . . ,+βkxkt + ut (1)

where ut follows the �rst order autoregressive model:

ut = ρut−1 + εt,−1 ≤ ρ ≤ 1. (2)

The proposed COPW-GM6 algorithm can be summarized as follows:

Step 1: Estimate the coe�cients of the multiple linear regression in Equation
(1) by using GM6-estimator and get the residuals, ut.

Step 2: Using the residuals obtained in Step 1, regress the following equation
by using GM6-estimator and get the ρ.

ut = ρut−1 + εt. (3)

Step 3: Using the estimate of ρ found in Step 2, estimate the following gen-
eralized di�erence equation by using the GM6-estimator.

y∗t = β∗
0 + β∗

1x
∗
1t + β∗

2x
∗
2t + . . .+ β∗

kx
∗
kt + εt (4)

where y∗t = (yt − ρ̂yt−1), x
∗
jt = (xjt − ρ̂xjt−1), β

∗
0 = β0(1− ρ̂) and β∗

j = βj for
j = 1, 2, . . . , k.

Step 4: Substitute the values of β̂∗
0 and β̂

∗
j for j = 1, 2, . . . , k found in Equation

(4) and hence obtain the new residuals.

Step 5: Repeat Step 2 to Step 4 until the successive estimates of ρ di�er by
less than 0.00001 or maximum of 20 iterations if the convergence criteria is not
met.

In the di�erencing procedure the �rst observation is lost as it has no an-
tecedent. To prevent this loss of one observation, the �rst observation on y and
xj is transformed by the following formula:

y∗1 = y
1
√

1−ρ̂2 and x∗j1 = x
j1
√

1−ρ̂2 .

2.2 The MM-Estimator

Yohai (1987) introduced MM estimator which employed more than one M-
estimation process to �nd the �nal estimates. The procedure of MM-estimator
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is summarized as follows (see Rousseeuw and Leroy (2003)):

Step 1: By employing a high breakdown estimator such as S-estimator
with Huber or bisquare weight function, compute the initial estimates of the
coe�cients and the corresponding residuals ri, i=1,2,. . . , n.

Step 2: By using M-estimator, compute M-estimate of scale, ŝ0 by minimizing
the function

min

n∑
i=1

ρ0

{
yi − xTi β̂0

ŝ0

}
.

Step 3 : Based on the appropriate re-descending function again use the M
estimator using the iterative procedure starting at β̂0. That is, compute the
MM-estimate, β̂ which is obtained from the solution of

min

n∑
i=1

ρ1

{
yi − xTi β̂

ŝ

}
.

Yohai (1987) noted that ρ0(r) and ρ1(r) can be taken as ρ0

(
r
k0

)
and ρ1

(
r
k1

)
,

respectively. Selecting k0 = 0.212 and k1 = 0.9014 will guarantee a high break-
down estimate and will result in 95% e�ciency at normal errors, respectively.
Generally, the MM estimate is resistant estimator except for the case of high
leverage points (see Hekimoglu and Erenoglu (2013)).

2.3 The GM6-Estimator

Coakley and Hettmansperger (1993) proposed GM6 estimator which is de-
�ned as a solution of normal equations as follows:

n∑
i=1

πiψ

{
yi − xtiβ̂
σ̂πi

}
xi = 0

where ψ = ρ
′
is a derivative of redescending function (weight function) and

πi, i = 1, 2, . . . , n is the ith initial weight element of the diagonal matrix W, σ̂
is the scale estimate, and β̂ is the vector of parameters estimates.

Step 1 : Calculate the residuals (ri) based on Least Trimmed of Squares (LTS)
estimator.
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Step 2 : Compute the estimated scale (σ) of the residuals, s = (1.4826)(1 +
5

(n−p−1) )( median ( |ri|), where ri is obtained from Step 1.

Step 3 : Compute the standardized residuals (ei), where, ei = ri/s.

Step 4 : Calculate the initial weight, denoted as πi, where πi = min
{
1,

χ2
0.95,k

RMD(MVE)

}
,

where RMD, MVE and k are Robust Mahalanobis Distance, Minimum Volume
Ellipsoid and the number of predictors in the model, respectively.

Step 5 :: Compute the bounded in�uence function, ti = ei/πi.

Step 6 :: Compute one-step Newton Raphson to obtain the GM6 estimates.

3. Results and Discussion

3.1 Monte Carlo Simulation Study

A Monte Carlo simulation study is performed to examine the performance
of our new proposed method (COPW-GM6) with some existing methods (OLS,
COPW and COPW-MM) in the simultaneous presence of autocorrelation prob-
lem, high leverage points(in this case bad leverage points) and outliers in the
y-direction. In this study, a multiple linear regression model with two predictor
variables and di�erent sample sizes, that is n = 20, 40, 60 and 80 are consid-
ered. For each sample size n = 20, 40, 60 and 80, the clean data are generated
using the following relationship (see Habshah et al. (2013)):

yt = 1 + 2x1t + 3x2t + ut (5)

where x1 and x2 are generated from uniform distribution, U(0,1). In order to
make sure that the simulated data have autocorrelated errors, the error term
ut is generated by using the following �rst order autoregressive scheme:

ut = 0.9ut−1 + εt (6)

with an initial value of u1 is generated from Normal Distribution, N(0,4) and
the white noise,εt is generated from Normal Distribution, N(0,1).

In order to create 5% and 10% HLPs in both x1 and x2 and in y-directions,
certain clean observations are replaced by contaminated observations in each
sample size. The contaminated observations in both x1 and x2 directions as well
as in y-directions are generated from U(4.9,5), U(9.9,10) and U(29.9,30) respec-
tively. To compare the performance of COPW-GM6 with COPW, COPW-MM
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and OLS, the Absolute Bias, standard errors and RMSE of parameter estimates
are obtained based on the average of R simulation runs where is R is the num-
ber of replications. The results of clean and contaminated data are displayed
in Tables 1, 2 and 3 respectively. It can be clearly seen from Table 1
that OLS performs poorly and has in�ated standard errors in the presence of
only autocorrelation problem. On the other hand, the COPW, COPW-MM
and COPW-GM6 are quite similar as the sample size increases. However, the
COPW is slightly better than COPW-MM and COPW-GM6 when there is
only autocorrelation problem in the data.

Table 1: SE, Absolute Bias and RMSE of estimates, autocorrelated errors, no outliers (α = 0%).

Method Coef n = 20 n = 40
SE Bias RMSE SE Bias RMSE

OLS β̂1 1.4404 0.0039 1.4404 1.2049 0.0387 1.2100

β̂2 1.4600 0.0521 1.4609 1.1544 0.0043 1.1544

COPW β̂1 0.1467 0.0440 0.1532 0.3778 0.0327 0.3792

β̂2 0.1693 0.1426 0.2214 0.3898 0.0007 0.3898

COPW-MM β̂1 0.7184 0.0158 0.7186 0.4736 0.0018 0.4736

β̂2 0.7834 0.0204 0.7837 0.4539 0.0034 0.4539

COPW-GM6 β̂1 1.1906 0.0341 1.1910 0.4718 0.0114 0.4719

β̂2 1.1626 0.0080 1.1626 0.4719 0.0043 0.4719
Method Coef n = 60 n = 80

SE Bias RMSE SE Bias RMSE

OLS β̂1 0.9785 0.0097 0.9786 0.8529 0.0043 0.8529

β̂2 0.9526 0.0012 0.9527 0.8627 0.0355 0.8694

COPW β̂1 0.3338 0.0097 0.3339 0.2957 0.0156 0.2961

β̂2 0.3441 0.0004 0.3441 0.2983 0.0084 0.2994

COPW-MM β̂1 0.3603 0.0063 0.3604 0.2995 0.0007 0.2995

β̂2 0.3585 0.0178 0.3589 0.3142 0.0018 0.3142

COPW-GM6 β̂1 0.3706 0.0016 0.3706 0.3139 0.0052 0.3140

β̂2 0.3675 0.0070 0.3675 0.3094 0.0005 0.3094

Let's now discuss the results when the generated data has autocorrelation
problem, HLPs (bad leverage points) and outliers in the y-directions. Tables
2 and 3 show the results for regression estimates when the simulated data
have autocorrelation, HLPs and outliers in the y-direction. We can clearly
observe that the values of SE and RMSE for OLS and COPW are higher
than the values of SE and RMSE for other robust regression estimates for
all possible combinations of sample sizes n and α. On the other hand, we
observe that in the presence of autocorrelation and di�erent percentages of
contamination points in x and y directions, COPW-GM6 and COPW-MM are
the best regression methods relative to other methods. However, COPW-GM6
outperforms COPW-MM.
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Table 2: SE, Absolute Bias and RMSE of estimates, autocorrelated errors, no outliers (α = 5%).

Method Coef n = 20 n = 40
SE Bias RMSE SE Bias RMSE
SE Bias RMSE SE Bias RMSE

OLS β̂1 4.9742 1.4905 5.1928 3.3549 1.5073 3.6779

β̂2 2.3786 3.3274 4.0902 1.5999 3.3179 3.6835

COPW β̂1 5.3465 1.6529 5.5961 1.6574 2.7366 3.7463

β̂2 2.5446 3.2533 4.1303 2.5584 0.3945 1.2737

COPW-MM β̂1 1.3666 9.8112 9.9059 0.6127 0.0913 0.6195

β̂2 1.6830 1.4158 2.1994 0.8493 0.1855 0.8693

COPW-GM6 β̂1 1.0695 0.0423 1.0703 0.5066 0.0245 0.5072

β̂2 1.0438 0.0606 1.0456 0.4946 0.0055 0.4946
Method Coef n = 60 n = 80

SE Bias RMSE SE Bias RMSE

OLS β̂1 2.7988 1.6814 3.2651 2.2577 1.6598 2.8022

β̂2 1.3273 3.2342 3.4960 1.0938 3.2538 3.4328

COPW β̂1 1.6952 1.5372 2.2884 1.1902 1.4679 1.8898

β̂2 0.8084 3.0974 3.2012 0.5908 3.0444 3.1012

COPW-MM β̂1 0.4163 0.0524 0.4196 0.3479 0.0794 0.3569

β̂2 0.4595 0.0990 0.4700 0.3736 0.1095 0.3893

COPW-GM6 β̂1 0.4070 0.0087 0.4071 0.3438 0.0061 0.3438

β̂2 0.4156 0.0209 0.4161 0.3815 0.0415 0.3639

Table 3: SE, Absolute Bias and RMSE of estimates, autocorrelated errors, no outliers (α = 10%).

Method Coef n = 20 n = 40
SE Bias RMSE SE Bias RMSE

OLS β̂1 7.0178 1.8515 7.2579 4.5385 1.4434 4.7625

β̂2 3.3197 3.3671 4.7284 2.1543 3.5418 4.1455

COPW β̂1 5.7136 1.6530 5.9479 2.4775 1.5703 2.9333

β̂2 2.7147 3.3100 4.2808 1.1784 3.1947 3.4051

COPW-MM β̂1 1.7822 0.6085 1.8832 0.8025 0.3401 0.8716

β̂2 1.8925 1.2590 2.2731 1.2311 0.7244 1.4285

COPW-GM6 β̂1 1.1088 0.0206 1.1090 0.6099 0.0335 0.6108

β̂2 1.1050 0.0303 1.1054 0.6485 0.0677 0.6521
Method Coef n = 60 n = 80

SE Bias RMSE SE Bias RMSE

OLS β̂1 3.7730 1.5536 4.0804 2.6900 2.4047 3.6082

β̂2 1.7922 3.4912 3.9244 2.2389 2.7624 3.5559

COPW β̂1 1.6978 1.4571 2.2373 1.0750 2.2737 2.5151

β̂2 0.8189 3.1372 3.2423 0.8938 2.7709 2.9115

COPW-MM β̂1 0.5360 0.2591 0.5954 0.4863 0.2979 0.5703

β̂2 0.8123 0.4300 0.9192 0.4886 0.4239 0.6469

COPW-GM6 β̂1 0.4795 0.0585 0.4831 0.3799 0.0115 0.3801

β̂2 0.6041 0.1379 0.6196 0.3669 0.0079 0.3670

3.2 U.S Consumption Expenditure Data set

The real data set to be discussed here is the U.S consumption expenditure
data set for the period 1947 through 2000 taken from Gujarati and Porter
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(2009). The data set shows the real consumption expenditures in billions of
dollars (y, real disposable income in billions of dollars (x1) and real wealth in
billions of dollars (x2) for the years between 1947 to 2000). The existence of
autocorrelation problem in the original U.S consumption expenditure data set is
evident since most of the points cluster around the �rst and the third quadrants
as shown in Figure 1. This is con�rmed by Breusch (1978), Godfrey (1978)
and Modi�ed Breusch-Godfrey (MBG) of Lim and Midi (2014) as depicted
in Table 4 since the p-values for both BG and MBG are signi�cant at 0.05
signi�cance level.

Table 4: BG and MBG for Auction Price Data Set

Method Test statistic P-value
BG 8.2369 0.0041
MBG 11.4020 0.0007

 

Figure 1: Current Residuals (Res1) Versus Lagged Residuals (Res (-1)) for U.S consumption ex-
penditure

We assess the merit of OLS, COPW, COPW-MM and COPW-GM6 in
both scenarios, original and modi�ed U.S consumption expenditure data set.
To create bad leverage points as well as outliers in the y-direction, the ith
observation of the response variable and explanatory variables are replaced
by an arbitrarily a large values. To make sure these large values are really
bad leverage points, DRGP-MGt plot of Alguraibawi et al. (2015) is employed
as displayed in Figure 2. This diagnostic plot classi�es the observations into
regular observations, vertical outliers, good and bad leverage points for the U.S
consumption expenditure data set. Figure 3 displays the DRGP versus MGt
plot for the modi�ed U.S consumption expenditure data set. It can be clearly
seen that case 17 is a bad leverage point while case 54 is a vertical outlier.
Since it is con�rmed that the modi�ed U.S consumption expenditure data set
has bad leverage point and an outlier in the y-directions, we now proceed to
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examine the performance of our proposed new method relative to some existing
methods.

M
G

T
 

Vertical Outliers Bad Leverage Points 

Regular Observations Good Leverage Points 

Vertical Outliers Bad Leverage Points 

DRGP 

 

 

Figure 2: Plot of DRGP against MGt

 

Figure 3: DRGP versus MGt for Modi�ed U.S consumption expenditure Data Set

The parameter estimates and their standard errors of OLS, COPW, COPW-
MM and COPW-GM6 regression estimators for original and modi�ed U.S con-
sumption expenditure data set are exhibited in Tables 5 and 6, respectively.
From Table 5, as expected, the standard errors of the parameter estimates
obtained by COPW, COPW-MM, and COPW-GM6 regression estimators are
fairly close to each other in the presence of only autocorrelation problem and
no outliers in the data.

Table 5: Estimates and standard deviation of original U.S consumption expenditure data set.

Method β1 β2

OLS Est. 0.7264 0.0364
S.E 0.0139 0.0025

COPW Est. 0.7417 0.0339
S.E 0.0210 0.0038

COPW-MM Est. 0.7422 0.0323
S.E 0.0178 0.0032

COPW-GM6 Est. 0.7736 0.0238
S.E 0.0339 0.0074
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On the other hand, COPW performs poorly and have in�ated standard
errors in the presence of autocorrelation, bad leverage point and outliers in
the y-direction, see Table 6. The parameter estimates of COPW regression
estimator for modi�ed data are completely di�erent from the one found in the
clean data set. It is interesting to see that not only the values but also the signs
of the parameter estimates changed. The parameter estimate of β1 obtained by
COPW estimator in the original data set is 0.7417 while the parameter estimate
of β2 obtained by COPW estimator when the data set is modi�ed in x1, x2
and the y- directions is -0.5860. Similarly, the estimated value of β2 obtained
by COPW estimator in the original dataset is 0.0339 whereas the parameter
estimate of β2 obtained by COPW estimator when the data set is modi�ed in
x1, x2 and the y-directions is 0.1237 which is not stable. On the contrary, the
COPW-MM and COPW-GM6 estimators provide close parameter estimates of
β1 and β2 to the parameter estimates obtained in the original data set when it
is applied to the modi�ed data set to estimate the regression coe�cients. This
indicates that the parameter estimates based on COPW-MM and COPW-GM6
estimators are stable. Furthermore, the standard errors of β̂1 and β̂2 based on
COPW-GM6 estimator is less than the standard errors of β̂1 and β̂2 based
on COPW-MM estimator in the modi�ed data set. This exhibits that the
parameter estimates based on COPW-GM6 estimator are more e�cient than
those obtained by COPW-MM estimator.

Table 6: Estimates and standard deviation of modi�ed U.S consumption expenditure data set.

Method β1 β2

OLS Est. -0.9969 0.2540
S.E 0.5447 0.1053

COPW Est. -0.5860 0.1237
S.E 0.6970 0.1386

COPW-MM Est. 0.7434 0.0320
S.E 0.0160 0.0032

COPW-GM6 Est. 0.7617 0.0265
S.E 0.0073 0.0021

4. Concluding Remarks

In the presence of both autocorrelation and outliers (bad leverage points
and vertical outliers), it is known that the multiple linear regression model
using the OLS and COPW methods are severely a�ected. The COPW can
only handle the problem of autocorrelation but not outliers. The COPW-
MM can remedy both problems of autocorrelation and vertical outliers but
not resistant to high leverage points. Hence, the gist of this study was to
develop robust Cochrane-Orcutt Prais-Winsten (COPW) iterative method for
multiple linear regression model with autocorrelated errors in the presence of
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high leverage points (i.e. bad leverage points) and outliers in the y-direction.
In this respect, we proposed robust Cochrane-Orcutt Prais-Winsten (COPW)
iterative method based on GM6-estimator, namely (COPW-GM6). Through
Monte Carlo simulation study conducted followed by a real data set example,
we showed that COPW performs better than some existing methods in the
presence of autocorrelated errors, vertical outliers and bad leverage points.
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